A Photopatternable Silicone for Biomems Applications

نویسندگان

  • Salil P. Desai
  • Brian M. Taff
  • Joel Voldman
چکیده

Here we show the application of a commercially available photopatternable silicone (PPS) that combines advantages of both PDMS and SU-8 to address a critical need in material building blocks for bioMEMS. Using PPS we have demonstrated the ability to pattern free-standing mechanically isolated elastomeric structures on a silicon substrate, a feat challenging to approach using soft lithography-based fabrication. PPS can be readily integrated in cell-based bioMEMS since it exhibits low-autofluorescence and cells can attach and proliferate on PPS-coated substrates. PPS is compatible with standard microfabrication processes and can be easily aligned to complex featured substrates on a wafer-scale. By leveraging PPS’s unique properties we demonstrate the design of a simple dielectrophoresis-based bioMEMS device for patterning mammalian cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A photopatternable silicone for biological applications.

We show the application of a commercially available photopatternable silicone (PPS) that combines the advantageous features of both PDMS and SU-8 to address a critical bioMEMS materials deficiency. Using PPS, we demonstrate the ability to pattern free-standing mechanically isolated elastomeric structures on a silicon substrate: a feat that is challenging to accomplish using soft lithography-bas...

متن کامل

An alternative method for fabricating microcontact printing stamps

In this paper, we describe the development of microcontact printing stamps from photopatternable silicone. The photopatternability of this material enables convenient and fast stamp fabrication, and allows rapid patterning of substrates for culturing biological cells. Microcontact printing stamps made of the photopatternable silicone with linewidths as small as 2 lm were fabricated and reliable...

متن کامل

Flexible, Stable, and Easily Processable Optical Silicones for Low Loss Polymer Waveguides

Photopatternable optical silicone materials have been developed that can be fabricated into flexible polymer waveguides using conventional film processing and photolithography techniques. Waveguides designed for multimode applications have demonstrated loss of 0.05 dB/cm at 850 nm. These waveguides have proven stable in 85% relative humidity and 85 C storage conditions for greater than 2000 ho...

متن کامل

BioMEMS and Lab-on-a-Chip Course Education at West Virginia University

With the rapid growth of Biological/Biomedical MicroElectroMechanical Systems (BioMEMS) and microfluidic-based lab-on-a-chip (LOC) technology to biological and biomedical research and applications, demands for educated and trained researchers and technicians in these fields are rapidly expanding. Universities are expected to develop educational plans to address these specialized needs in BioMEM...

متن کامل

BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes

This paper surveys a few of the emerging bioMEMS technologies at EPFL for improved, inexpensive health care. The lab-on-a-chip systems use dielectrophoretic forces to direct cell movement within microfluidic networks and impedance spectroscopy for label-free inflow characterization of living cells. The implantable microelectrodes for neural applications are based on thin-film polymer foils with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007